The SVM class

(PECL svm >= 0.1.0)

Introduction

Class synopsis

class SVM {
/* Constants */
const int C_SVC = 0;
const int NU_SVC = 1;
const int ONE_CLASS = 2;
const int EPSILON_SVR = 3;
const int NU_SVR = 4;
const int KERNEL_LINEAR = 0;
const int KERNEL_POLY = 1;
const int KERNEL_RBF = 2;
const int KERNEL_SIGMOID = 3;
const int KERNEL_PRECOMPUTED = 4;
const int OPT_TYPE = 101;
const int OPT_KERNEL_TYPE = 102;
const int OPT_DEGREE = 103;
const int OPT_SHRINKING = 104;
const int OPT_PROPABILITY = 105;
const int OPT_GAMMA = 201;
const int OPT_NU = 202;
const int OPT_EPS = 203;
const int OPT_P = 204;
const int OPT_COEF_ZERO = 205;
const int OPT_C = 206;
const int OPT_CACHE_SIZE = 207;
/* Methods */
public __construct()
public svm::crossvalidate(array $problem, int $number_of_folds): float
public getOptions(): array
public setOptions(array $params): bool
public svm::train(array $problem, array $weights = ?): SVMModel
}

Predefined Constants

SVM Constants

SVM::C_SVC

The basic C_SVC SVM type. The default, and a good starting point

SVM::NU_SVC

The NU_SVC type uses a different, more flexible, error weighting

SVM::ONE_CLASS

One class SVM type. Train just on a single class, using outliers as negative examples

SVM::EPSILON_SVR

A SVM type for regression (predicting a value rather than just a class)

SVM::NU_SVR

A NU style SVM regression type

SVM::KERNEL_LINEAR

A very simple kernel, can work well on large document classification problems

SVM::KERNEL_POLY

A polynomial kernel

SVM::KERNEL_RBF

The common Gaussian RBD kernel. Handles non-linear problems well and is a good default for classification

SVM::KERNEL_SIGMOID

A kernel based on the sigmoid function. Using this makes the SVM very similar to a two layer sigmoid based neural network

SVM::KERNEL_PRECOMPUTED

A precomputed kernel - currently unsupported.

SVM::OPT_TYPE

The options key for the SVM type

SVM::OPT_KERNEL_TYPE

The options key for the kernel type

SVM::OPT_DEGREE

SVM::OPT_SHRINKING

Training parameter, boolean, for whether to use the shrinking heuristics

SVM::OPT_PROBABILITY

Training parameter, boolean, for whether to collect and use probability estimates

SVM::OPT_GAMMA

Algorithm parameter for Poly, RBF and Sigmoid kernel types.

SVM::OPT_NU

The option key for the nu parameter, only used in the NU_ SVM types

SVM::OPT_EPS

The option key for the Epsilon parameter, used in epsilon regression

SVM::OPT_P

Training parameter used by Episilon SVR regression

SVM::OPT_COEF_ZERO

Algorithm parameter for poly and sigmoid kernels

SVM::OPT_C

The option for the cost parameter that controls tradeoff between errors and generality - effectively the penalty for misclassifying training examples.

SVM::OPT_CACHE_SIZE

Memory cache size, in MB

Table of Contents

Here you can write a comment


Please enter at least 10 characters.
Loading... Please wait.
* Pflichtangabe
There are no comments available yet.

Was genau bedeutet "Vibe Coding"? Ein tiefgehender Blick für Entwickler

In der Welt der Softwareentwicklung gibt es unzählige Wege, wie man an ein Projekt herangeht. Manche schwören auf strikte Planung, andere auf bewährte Algorithmen und wieder andere lassen sich von etwas ganz anderem leiten: ihrem Gefühl. ...

admin

Autor : admin
Category: Software & Web-Development

PHP cURL Tutorial: Using cURL to Make HTTP Requests

cURL is a powerful PHP extension that allows you to communicate with different servers using various protocols, including HTTP, HTTPS, FTP, and more. ...

TheMax

Autor : TheMax
Category: PHP-Tutorials

Midjourney Tutorial - Instructions for beginners

There is an informative video about Midjourney, the tool for creating digital images using artificial intelligence, entitled "Midjourney tutorial in German - instructions for beginners" ...

Mike94

Autor : Mike94
Category: KI Tutorials

Publish a tutorial

Share your knowledge with other developers worldwide

Share your knowledge with other developers worldwide

You are a professional in your field and want to share your knowledge, then sign up now and share it with our PHP community

learn more

Publish a tutorial